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Samples for 2-dimensional projection of kinetic trajectories are shown in Figure 7. The coil states are
loosely gathered while the native states can form a black cluster with extreme high density in 2-dimensional

projection plane.
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Kinetic trajectories are projected onto xx and yy variables in Figure 7. This figure shows two populated

states. One corresponds to loosely gathered coil states while the other is the native state with a high density.
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The accuracy of the model structures is given by TM-score. In case of a perfect match to experimental

structure, TM-score would be 1.
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The accuracy of the model structures is measured by TM-score, which is equal to 1 if there is a perfect

match to the experimental structure.
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The smallest URFs (URFAG6L), a 207-nucleotide (nt) reading frame overlapping out of phase the NH2-
terminal portion of the adenosinetrip hosphatase (ATPase) subinit 6 gene has been identified as the animal

equivalent of the recently discovered yeast H+-ATPase subunit 8 gene.
IR E) 5, R IAE B2 A
The smallest of the URFs is URFAG6L, a 207-nucleotide (nt) reading frame overlapping out of phase the

NH2-terminal portion of the adenosinetriphosphatase (ATPase) subinit 6 Gene; it has been identified as the

animal equivalent of the recently discovered yeast H+-ATPase subunit 8 gene.
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URFAGL has been identified as the animal equivalent of the recently discovered yeast H+-ATPase subunit

8 gene.

Recently discovered yeast H+-ATPase subunit 8 gene has a corresponding animal equivalent gene
URFAG6L.
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The enthalpy of hydrogen bond formation between the nucleoside bases 2-deoxyguanosine (dG) and 2-

deoxycytidine (dC) has been determined by direct measurement.
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We have directly measured the enthalpy of hydrogen bond formation between the nucleoside bases 2-deoxyguanosine
(dG) and 2-deoxycytidine (dC).
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The enthalpy of hydrogen bond formation between the nucleoside bases 2-deoxyguanosine (dG) and 2-
deoxycytidine (dC) has been determined by direct measurement. dG and dC were derivatized at the 5 and 3
hydroxyls with triisopropylsilyl groups to obtain solubility of the nucleosides in non-aqueous solvents and to

prevent the ribose hydroxyls from forming hydrogen bonds. From isoperibolic titration measurements, the



enthalpy of dC:dG base pair formation is -6.650.32 kcal/mol.
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We have directly measured the enthalpy of hydrogen bond formation between the nucleoside bases 2-
deoxyguanosine (dG) and 2-deoxycytidine (dC). dG and dC were derivatized at the 5 and 3 hydroxyls with
triisopropylsilyl groups; these groups serve both to solubilize the nucleosides in non-aqueous solvents and to
prevent the ribose hydroxyls from forming hydrogen bonds. The enthalpy of dC:dG base pair formation is -

6.650.32 kcal/mol according to isoperibolic titration measurements.
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Large earthquakes along a given fault segment do not occur at random intervals because it takes time to
accumulate the strain energy for the rupture. The rates at which tectonic plates move and accumulate strain at
their boundaries are approximately uniform. Therefore, in first approximation, one may expect that large
ruptures of the same fault segment will occur at approximately constant time intervals. If subsequent main
shocks have different amounts of slip across the fault, then the recurrence time may vary, and the basic idea of

periodic main shocks must be modified.
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Large earthquakes along a given fault segment do not occur at random intervals because it takes time to
accumulate the strain energy for the rupture. The rates of strain accumulation at the boundaries of tectonic
plates are approximately uniform. Therefore, nearly constant time intervals (at first approximation) would be
expected between large ruptures of the same fault segment. [However?], the recurrence time may vary; the
basic idea of periodic main shocks may need to be modified if subsequent main shocks have different amounts

of slip across the fault.
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Method Alignment | MaxSub MaxSub MaxSub
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SPARKS?2 54.9% 341.0 591.0 40.7
This work 56.6% 349.2 601.9 42.2
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Fig. 3. Aliznment accuracies (measured by SPS) as a function of average
sequence identity given by methods SPEM. ProbCons. MUSCLE 6.0, T-
Coffee and ClustalW. shown as labeled. Each point is represented by the
lower bound of sequence identity at each bin.
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Assessing secondary structure assignments of protein structures by using pairwise sequence-

alignment benchmarks

The secondary structure of a protein refers to the local conformation of its polypeptide

backbone. Knowing secondary structures of proteins is essential for their structure classification'?,

10



understanding  folding dynamics and mechanisms®®, and  discovering conserved

structural/functional motifs®’. Secondary structure information is also useful for sequence and
multiple sequence alignment®®, structure alignment!®!!, and sequence to structure alignment (or

threading)!?!%. As a result, predicting secondary structures from protein sequences continues to be

an active field of research!®!# fifty six years after Pauling and Corey'*% first predicted that the most
common regular patterns of protein backbones are the a-helix and the B-sheet. Prediction and

application of protein secondary structures rely on prior assignment of the secondary-structure

elements from a given protein structure by human or computational methods.

Many computational methods have been developed to automate the assignment of
secondary structures. Examples are DSSP,STRIDE, DEFINE, P-SEA, KAKSI,P-CURVE,
XTLSSTR, SECSTR, SEGNO, and VoTAP. These methods are based on either the hydrogen-

bond pattern, geometric features, expert knowledge or their combinations. However, they often
disagree on their assignments. For example, disagreement among DSSP, P-CURVE, and
DEFINE can be as large as 25%. More beta sheet is assigned by XTLSSTR and more pi-helix by
SECSTR than by DSSP. The discrepancy among different methods is caused by non-ideal
configurations of helices and sheets. As a result, defining the boundaries between helix, sheet, and

coil is problematical and a significant source of discrepancies between different methods.

Inconsistent assignment of secondary structures by different methods highlights the

need for a criterion or a benchmark of “standard” assignments that could be used to assess and

compare assignment methods. One possibility is to use the secondary structures assigned by the
authors who solved the protein structures. STRIDE, in fact, has been optimized to achieve the
highest agreement with the authors’ annotations. However, it is not clear what is the criterion used
for manual or automatic assignment of secondary structures by different authors. Another
possibility is to treat the consensus prediction by several methods as the gold standard. However,
there is no obvious reason why each method should weight equally in assigning secondary

structures and which method should be used in consensus. Other used criteria include helix-

capping propensity, the deviation from ideal helical and sheet configurations, and structural

accuracy produced by sequence-to-structure alignment guided by secondary structure assignment.

In this paper, we propose to use sequence-alignment benchmarks for assessing secondary
structure assignments. These benchmarks are produced by 3D-structure alignment of structurally
homologous proteins. Instead of assessing the accuracy of secondary-structure assignment
directly, which is not yet feasible, we compare the two assignments of secondary structures in
structurally aligned positions. We assume that the best method should assign the same secondary-

structure element to the highest fraction of structurally aligned positions. Certainly, structurally

11



aligned positions do not always have the same secondary structures. Moreover, different structure-
alignment methods do not always produce the same result. Nevertheless, this criterion provides a
mean to locate a secondary-structure assignment method that is most consistent with tertiary
structure alignment. We suggest that this approach provides an objective evaluation of secondary

structure assignment methods.
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One question about the complex homopolymer phase diagram presented here is whether it is
caused by the discontinuous feature of the square-well potential. We cannot give a direct answer
because the DMD simulation is required to obtain well-converged results for the thermodynamics.
However, the critical phenomena predicted for a fluid composed of particles interacting with a
square-well potential are as realistic as those predicted for a fluid composed of particles interacting
with a LJ potential. Also an analogous complex phase diagram is found in simulations of LJ
clusters. The present results for square-well homopolymers may well be found in more realistic

homopolymer models and even in real polymers.
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How to make an objective assignment of secondary structures based on a protein structure is an
unsolved problem. Defining the boundaries between helix, sheet, and coil structures is arbitrary, and
commonly accepted standard assignments do not exist. Here, we propose a criterion that assesses
secondary-structure assignment based on the similarity of the secondary structures assigned to
structurally aligned residues in sequence-alignment benchmarks. This criterion is used to rank six
secondary-structure assignment methods: STRIDE, DSSP, SECSTR, KAKSI, P-SEA, and SEGNO
with three established sequence-alignment benchmarks (PREFAB, SABmark and SALIGN).
STRIDE and KAKSI achieve comparable success rates in assigning the same secondary structure
elements to structurally aligned residues in the three benchmarks. Their success rates are between
1-4% higher than those of the other four methods. The consensus of STRIDE, KAKSI, SECSTR,
and P-SEA, called SKSP, improves assignments over the best single method in each benchmark by
an additional 1%. These results support the usefulness of the sequence alignment benchmarks as the

benchmarks for secondary structure assignment.
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